Quantifying Particulate Matter Emissions from Wind Blown Dust Using Real-time Sand Flux Measurements

Duane Ono & Scott Weaver,

Great Basin Unified Air Pollution Control District

Ken Richmond, MFG, Inc.

April 2003

US EPA Emission Inventory Conference

San Diego, California

Two Methods to Estimate PM-10 Emissions Due to Wind Blown Dust

 AP-42 method for Industrial Wind Erosion (Section 13.2.5)

 Dust ID method developed at Owens Lake

AP-42 PM-10 Emissions

$$e=k\sum_{i=1}^{N}P_{i}$$

```
e = PM-10 emission factor [g/m^2/yr]

k = 0.5 for PM-10

P_i = erosion potential corresponding to the i<sup>th</sup> period

N = number of disturbances per year

P_i = 58(u_i^*- u_t^*)<sup>2</sup> + 25(u_i^*- u_t^*) [g/m^2/period]

P_i = 0, for u_i^* \le u_t^*

u_i^* = Friction velocity for the fastest mile [m/s]

u_i^* = Threshold friction velocity
```

Dust ID Method

based on Shao, et al., 1993

$$F_a = g m_d \left(\frac{g}{Y}\right) Q f\left(\frac{V_H}{u^*}\right)$$

$$\frac{F_a}{Q} \approx Constant$$

Dust ID Method

$$F_a = K_f x q$$

```
F_a = PM-10 emissions [g/cm<sup>2</sup>/hr]

K_f = K-factor

q = sand flux at 15 cm [g/cm<sup>2</sup>/hr]
```

Owens Lake Dust ID Monitoring Network

135 sand flux sites
6 PM-10 TEOM sites
13 10-m met towers
Upper air profiler
Time-lapse camera sites
Dust observer sites

Sand Flux Monitors

Cox Sand Catcher - Collects saltationsize particles

Sensit [™] - Electronically records sand flux.

Sensits & Cox Sand Catcher

Sensit Reading vs. Sand Catch

K-factor Calculations

$$K_f = K_i \left(\frac{C_{obs.} - C_{bac.}}{C_{mod.}} \right)$$

 $K_f = Hourly K-factor$

 $K_i = Initial K-factor (5 x 10⁻⁵)$

C_{obs.}= **Monitored hourly PM-10**

C_{bac.}= Hourly background PM-10

C_{mod.}= Modeled PM-10 at monitor site

Dust Storm at Owens Lake

VISIBLE DUST PLUMES & SAND FLUX

Observed dust plume locations corresponded to the hotspot areas identified by the sand flux monitoring network.

Example Storm: Feb. 6-8, 2001 (52 hour total)

Hourly & Storm Average K_f for the South Area

Temporal & Spatial K-factors

Period	Keeler Dunes	North Area	Central Area	South Area
1/1/00-2/3/01	5.1	2.1	6.6	1.9
2/4/01-4/18/01	5.1	2.1	26.0	6.7
4/19/01-11/30/01	5.1	2.1	6.3	1.9
12/1/01-3/8/02	20.0	7.6	36.0	5.8
3/9/02-4/18/02	5.5	5.0	6.9	9.0
4/19/02-6/30/02	5.5	5.0	6.6	1.8

Univ. of Guelph Wind Tunnel

Comparison of Wind Tunnel & Dust ID K-factors

Dust ID Period	Area	Wind Tunnel	Dust ID
1/1/00 - 2/3/01	North Area	2.3 x 10 ⁻⁵	1.8 x 10 ⁻⁵
1/1/00 - 2/3/01	Keeler Dunes	1.3 x 10 ⁻⁵	3.5 x 10 ⁻⁵
2/4/01 - 4/18/01	Central Area	9.7 x 10 ⁻⁵	24.1 x 10 ⁻⁵
2/4/01 - 4/18/01	South Area	6.6 x 10 ⁻⁵	5.9 x 10 ⁻⁵
4/19/01 - 11/30/01	Central Area	16.0 x 10 ⁻⁵	5.7 x 10 ⁻⁵
4/19/01 - 11/30/01	South Area	3.1 x 10 ⁻⁵	2.0 x 10 ⁻⁵

Comparison of Hourly Monitored and Modeled PM-10 at Shell Cut, May 2-3, 2001

Daily PM-10 Emissions

Dust ID vs AP-42 PM-10 Emission Estimates

Owens Lake PM-10 Emissions

Peak Daily PM-10 = 7,200 tons

Annual PM-10 = 79,200 tons

Dust ID Period: July 2000 - June 2001.

Conclusions

- PM-10 emissions due to wind erosion were found to be proportional to the saltation flux and could be estimated from measured sand flux.
- Proportionality factors, or K-factors could be derived by comparing monitored PM-10 concentrations to modeled values using the measured sand flux with an initial K-factor.
- Average K-factors were found to vary spatially and temporally at Owens Lake.